Thursday 2 May 2019

40+ TOP MOST EDC LAB VIVA Questions and Answers

0 comments

Below are the list of Freequently Asked  ECE VIVA Questiions and Answers for Engineering students.




1. What is Electronic?
The study and use of electrical devices that operate by controlling the flow of electrons or other electrically charged particles.

2. What is communication?
Communication means transferring a signal from the transmitter which passes through a medium then the output is obtained at the receiver. (or)communication says as transferring of message from one place to another place called communication.

3. Different types of communications? Explain.
Analog and digital communication.
As a technology, analog is the process of taking an audio or video signal (the human voice) and translating it into electronic pulses. Digital on the other hand is breaking the signal into a binary format where the audio or video data is represented by a series of "1"s and "0"s.
Digital signals are immune to noise, quality of transmission and reception is good, components used in digital communication can be produced with high precision and power consumption is also very less when compared with analog signals.

4. What is sampling?
The process of obtaining a set of samples from a continuous function of time x(t) is referred to as sampling.

5. State sampling theorem?
It states that, while taking the samples of a continuous signal, it has to be taken care that the sampling rate is equal to or greater than twice the cut off frequency and the minimum sampling rate is known as the Nyquist rate.

6. What is cut-off frequency?
The frequency at which the response is -3dB with respect to the maximum response.

7. What is pass band?
Passband is the range of frequencies or wavelengths that can pass through a filter without being attenuated.

8. What is stop band?
A stopband is a band of frequencies, between specified limits, in which a circuit, such as a filter or telephone circuit, does not let signals through, or the attenuation is above the required stopband attenuation level.

9. Explain RF?
Radio frequency (RF) is a frequency or rate of oscillation within the range of about 3 Hz to 300 GHz. This range corresponds to frequency of alternating current electrical signals used to produce and detect radio waves. Since most of this range is beyond the vibration rate that most mechanical systems can respond to, RF usually refers to oscillations in electrical circuits or electromagnetic radiation.

10. What is modulation? And where it is utilized?
Modulation is the process of varying some characteristic of a periodic wave with an external signals.
Radio communication superimposes this information bearing signal onto a carrier signal.
These high frequency carrier signals can be transmitted over the air easily and are capable of travelling long distances.
The characteristics (amplitude, frequency, or phase) of the carrier signal are varied in accordance with the information bearing signal.
Modulation is utilized to send an information bearing signal over long distances.

11. What is demodulation?
Demodulation is the act of removing the modulation from an analog signal to get the original baseband signal back. Demodulating is necessary because the receiver system receives a modulated signal with specific characteristics and it needs to turn it to base-band.

12. Name the modulation techniques?
For Analog modulation--AM, SSB, FM, PM and SM
Digital modulation--OOK, FSK, ASK, Psk, QAM, MSK, CPM, PPM, TCM, OFDM

13. Explain AM and FM?
AM-Amplitude modulation is a type of modulation where the amplitude of the carrier signal is varied in accordance with the information bearing signal.
FM-Frequency modulation is a type of modulation where the frequency of the carrier signal is varied in accordance with the information bearing signal.

14. Where do we use AM and FM?
AM is used for video signals for example TV. Ranges from 535 to 1705 kHz.
FM is used for audio signals for example Radio. Ranges from 88 to 108 MHz.

15. What is a base station?
Base station is a radio receiver/transmitter that serves as the hub of the local wireless network, and may also be the gateway between a wired network and the wireless network.

16. How many satellites are required to cover the earth?
3 satellites are required to cover the entire earth, which is placed at 120 degree to each other. The life span of the satellite is about 15 years.

17. What is a repeater?
A repeater is an electronic device that receives a signal and retransmits it at a higher level and/or higher power, or onto the other side of an obstruction, so that the signal can cover longer distances without degradation.

18. What is an Amplifier?
An electronic device or electrical circuit that is used to boost (amplify) the power, voltage or current of an applied signal.

19. Example for negative feedback and positive feedback?
Example for –ve feedback is ---Amplifiers And for +ve feedback is – Oscillators.

20. What is Oscillator?
An oscillator is a circuit that creates a waveform output from a direct current input. The two main types of oscillator are harmonic and relaxation. The harmonic oscillators have smooth curved waveforms, while relaxation oscillators have waveforms with sharp changes.

21. What is an Integrated Circuit?
An integrated circuit (IC), also called a microchip, is an electronic circuit etched onto a silicon chip. Their main advantages are low cost, low power, high performance, and very small size.

22. What is crosstalk?
Crosstalk is a form of interference caused by signals in nearby conductors. The most common example is hearing an unwanted conversation on the telephone. Crosstalk can also occur in radios, televisions, networking equipment, and even electric guitars.

23. What is resistor?
A resistor is a two-terminal electronic component that opposes an electric current by producing a voltage drop between its terminals in proportion to the current, that is, in accordance with Ohm's law:
V = IR.

25. What is inductor?
An inductor is a passive electrical device employed in electrical circuits for its property of inductance. An inductor can take many forms.

26. What is conductor?
A substance, body, or device that readily conducts heat, electricity, sound, etc. Copper is a good conductor of electricity.

27. What is a semi conductor?
A semiconductor is a solid material that has electrical conductivity in between that of a conductor and that of an insulator(An Insulator is a material that resists the flow of electric current. It is an object intended to support or separate electrical conductors without passing current through itself); it can vary over that wide range either permanently or dynamically.

28. What is diode?
In electronics, a diode is a two-terminal device. Diodes have two active electrodes between which the signal of interest may flow, and most are used for their unidirectional current property.

29. What is transistor?
In electronics, a transistor is a semiconductor device commonly used to amplify or switch electronic signals. The transistor is the fundamental building block of computers, and all other modern electronic devices. Some transistors are packaged individually but most are found in integrated circuits.

30. What is op-amp?
An operational amplifier, often called an op-amp , is a DC-coupled high-gain electronic voltage amplifier with differential inputs[1] and, usually, a single output. Typically the output of the op-amp is controlled either by negative feedback, which largely determines the magnitude of its output voltage gain, or by positive feedback, which facilitates regenerative gain and oscillation.

31. What is a feedback?
Feedback is a process whereby some proportion of the output signal of a system is passed (fed back) to the input. This is often used to control the dynamic behaviour of the system.

32. Advantages of negative feedback over positive feedback?
Much attention has been given by researchers to negative feedback processes, because negative feedback processes lead systems towards equilibrium states. Positive feedback reinforces a given tendency of a system and can lead a system away from equilibrium states, possibly causing quite unexpected results.

33. What is Barkhausen criteria?
Barkhausen criteria, without which you will not know which conditions, are to be satisfied for oscillations.
“Oscillations will not be sustained if, at the oscillator frequency, the magnitude of the product of the
transfer gain of the amplifier and the magnitude of the feedback factor of the feedback network ( the magnitude of the loop gain ) are less than unity”.
The condition of unity loop gain -Aβ = 1 is called the Barkhausen criterion. This condition implies that
Aβ= 1and that the phase of - Aβ is zero.

34. What is CDMA, TDMA, FDMA?
Code division multiple access (CDMA) is a channel access method utilized by various radio communication technologies. CDMA employs spread-spectrum technology and a special coding scheme (where each transmitter is assigned a code) to allow multiple users to be multiplexed over the same physical channel. By contrast, time division multiple access (TDMA) divides access by time, while frequency-division multiple access (FDMA) divides it by frequency.
An analogy to the problem of multiple access is a room (channel) in which people wish to communicate with each other. To avoid confusion, people could take turns speaking (time division), speak at different pitches (frequency division), or speak in different directions (spatial division). In CDMA, they would speak different languages. People speaking the same language can understand each other, but not other people. Similarly, in radio CDMA, each group of users is given a shared code. Many codes occupy the same channel, but only users associated with a particular code can understand each other.

35. explain different types of feedback?
Types of feedback:
Negative feedback: This tends to reduce output (but in amplifiers, stabilizes and linearizes operation). Negative feedback feeds part of a system's output, inverted, into the system's input; generally with the result that fluctuations are attenuated.
Positive feedback: This tends to increase output. Positive feedback, sometimes referred to as "cumulative causation", is a feedback loop system in which the system responds to perturbation (A perturbation means a system, is an alteration of function, induced by external or internal mechanisms) in the same direction as the perturbation. In contrast, a system that responds to the perturbation in the opposite direction is called a negative feedback system.
Bipolar feedback: which can either increase or decrease output.

36. What are the main divisions of power system?
The generating system,transmission system,and distribution system.

37. What is Instrumentation Amplifier (IA) and what are all the advantages?
An instrumentation amplifier is a differential op-amp circuit providing high input impedances with ease of gain adjustment by varying a single resistor.

38. What is meant by impedance diagram? 
The equivalent circuit of all the components of the power system are drawn and they are interconnected is called impedance diagram.

39. What is the need for load flow study?
The load flow study of a power system is essential to decide the best operation existing system and for planning the future expansion of the system. It is also essential for designing the power system.

40. What is the need for base values? 
The components of power system may operate at different voltage and power levels. It will be convenient for analysis of power system if the voltage, power, current ratings of the components of the power system is expressed with referance to a common value called base value.

Wednesday 1 May 2019

Commonly Asked Embedded Systems viva questions with answers

0 comments

Frequently Asked Embedded Systems viva questions with answers:




Q1. What is an embedded system?
Ans. An embedded system is a special purpose computer system which is completely encapsulated by device it control. It is a programmed hardware device in which the hardware chip is programmed with specific function. It is a combination of hardware and software.

Q2. What are the characteristics of embedded system? 
Ans. The Characteristics of the embedded systems are as follows-
1. Sophisticated functionality
2. Real time behavior
3. Low manufacturing cost
4. Low power consumption
5. User friendly
6. Small size

Q3. What are the types of embedded system? 
Ans. They are of 4 types
1. General computing
2. Control System
3. Digital Signal Processing
4. Communication and network

Q4. What is digital signal controller ?
Ans. DSC is 16 bit RISC machine that combines control advantages of micro-controller and digital signal processing to produce tightly coupled single chip-single instruction stream solution for embedded system design.

Q5. What are the components of embedded system?
Ans. Microcontroller, microprocessor, DSC, DSP, busses, system clock, Read only Memory(ROM), RAM, Real time clock these are the components of embedded system.

Q6. Why we use embedded systems?
Ans. Embedded systems avoid lots of electronic components and they have rich built in functionality. They reduces the cost and maintenance cost and the probability of failure of embedded system is less so embedded system are in very much use now a days.

Q7. What are the languages used in embedded system?
Ans. Assembly language and C are  basically used for embedded system. Java and ADA are also preferred.

Q8. How does combination of functions reduce memory requirement in embedded system?
Ans. By using functions the amount of code that has to be dealt with is reduced thus redundancy is eliminated for everything common in function.

Q9. What is the significance of watchdog timer in ES?
Ans. It is a timing device which is set to predefined time interval and some task is to be performed at that time. It is used to reset original state when an inappropriate event take place.It is usually operated by counter device.

Q10. What is the difference between mutexes and semaphores?
Ans. Semaphores are the synchronization tool to overcome critical section problem.
Mutex is also a tool that is used to provide deadlock free mutual exclusion. It protects access to every critical data item, if the data is locked and is in use,it either waits for the thread to finish or awakened to release the lock from its inactive state.

Q11. What is the difference between FIFO and the memory?
FIFO (first in first out) is a memory structure where data’s can be stored and retrieved. This is a queue where memory is a storage device which can hold data’s dynamically or at any desired locations and can be retrieved in any order.

Q12. What is an anti-aliasing filter?
Anti-aliasing filter reduces errors due to aliasing.

Q13. How to implement a fourth order Butter worth LP filter at 1 KHz if sampling frequency is 8 KHz?
A fourth order butter worth filter can be made as cascade of two second order LP filters with zeta of 0.924 and 0.383. One can use a bilinear transformation approach for realising second order LP filters. Using this technique described well in many texts, one can make second order LP filters and cascade them

Q14. Is 8085 an embedded system?
It’s not an embedded system. B’coz it will be a part of an embedded system and it does not work on any software.

 Q15.What is the role of segment register?
In the 8086 processor architecture, memory addresses are specified in two parts called the segment and the offset. Segment values are stored in the segment registers. There are four or more segment registers: Code Segment (CS) contains segment of the current instruction (IP is the offset), Stack segment (SS) contain stack of the segment (SP is the offset), DS is the segment used by default for most data operations; ES is an extra segment register.

Q16.What type of registers contains an INTEL CPU?
 Special function registers like accumulator, program controller (PC), data pointer (DPTR), TMOD and TCON (timing registers), 3 register banks with r0 to r7, Bit addressable registers like B.

 Q17. What is the difference between microprocessor and micro controller?
Microprocessor is managers of the resources (I/O, memory) which lie out-side of its architecture.
Micro controllers have I/O, memory etc. built into it and specifically designed for control.

Q18. DMA deals with which address (physical/virtual addresses)?
DMA deals with physical addresses. DMA controller is a device which directly drives the data and address bus during data transfer. So it is purely physical address.

 Q19. What is the difference between testing and verification?
Verification is a front end process and testing is a post silicon process. Verification is to verify the functionality of the design during the design cycle. Testing is find manufacturing faults.

Most Important Microprocessor VIVA Questions with Answers

0 comments

Tricky MPMC Viva Questions with Answers:




1.What is a Microprocessor?
Microprocessor is a CPU fabricated on a single chip, program-controlled device, which fetches the instructions from memory, decodes and executes the instructions.

2. What is Instruction Set?
 It is the set of the instructions that the Microprocessor can execute.

3. What is Bandwidth ?
 The number of bits processed by the processor in a single instruction.

4. What is Clock Speed ?
Clock speed is measured in the MHz and it determines that how many instructions a processor can processed.The speed of the microprocessor is measured in the MHz or GHz.

5. What are the features of Intel 8086 ?
Features:
·  Released by Intel in 1978
·  Produced from 1978 to 1990s
·  A 16-bit microprocessor chip.
·  Max. CPU clock rate:5 MHz to 10 MHz
·  Instruction set:  x86-16
·  Package: 40 pin DIP
·  16-bit Arithmetic Logic Unit
·  16-bit data bus  (8088 has 8-bit data bus)
·  20-bit address bus - 220 = 1,048,576 = 1 meg
·  The address refers to a byte in memory.

6.What are the flags in 8086?
In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trace flag, Interrupt flag, Direction flag, and Sign flag.

7.Why crystal is a preferred clock source?
Because of high stability, large Q (Quality Factor) & the frequency that doesn’t drift with aging. Crystal is used as a clock source most of the times.

8.What is Tri-state logic?
Three Logic Levels are used and they are High, Low, High impedance state. The high and low are normal logic levels & high impedance state is electrical open circuit conditions. Tri-state logic has a third line called enable line.

9.What happens when HLT instruction is executed in processor?
The Micro Processor enters into Halt-State and the buses are tri-stated.

10.What is Program counter?
Program counter holds the address of either the first byte of the next instruction to be fetched for execution or the address of the next byte of a multi byte instruction, which has not been completely fetched. In both the cases it gets incremented automatically one by one as the instruction bytes get fetched. Also Program register keeps the address of the next instruction.

11.What is 1st / 2nd / 3rd / 4th generation processor?
The processor made of PMOS / NMOS / HMOS / HCMOS technology is called 1st / 2nd / 3rd / 4th generation processor, and it is made up of 4 / 8 / 16 / 32 bits.

12.What is the Maximum clock frequency in 8086?
5 Mhz is the Maximum clock frequency in 8086.

13.What is meant by Maskable interrupts?
An interrupt that can be turned off by the programmer is known as Maskable interrupt.

14.What is Non-Maskable interrupts?
An interrupt which can be never be turned off (ie. disabled) is known as Non-Maskable interrupt

15.What are the different functional units in 8086?
Bus Interface Unit and Execution unit, are the two different functional units in 8086.

16.What are the various segment registers in 8086?
Code, Data, Stack, Extra Segment registers in 8086.

17.What does EU do?
Execution Unit receives program instruction codes and data from BIU, executes these instructions and store the result in general registers.

18.Which Stack is used in 8086? k is used in 8086?
FIFO (First In First Out) stack is used in 8086.In this type of Stack the first stored information is retrieved first.

19.What are the flags in 8086?
In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trace flag, Interrupt flag, Direction flag, and Sign flag.

20.What is SIM and RIM instructions?
SIM is Set Interrupt Mask. Used to mask the hardware interrupts.
RIM is Read Interrupt Mask. Used to check whether the interrupt is Masked or not.

21.What are Flag registers?
A:-Divided into 2 parts:-Condition code or status flags and machine control flags.
S-Sign Flag:-Is to set when the result of any computation is negative.
Z-Zero Flag:-Is to set if the result of the computation or comparison performed by the previous instruction is zero.
C-Carry Flag:-Is set when there is carry out of MSB in case of addition or a borrow in case of subtraction.
T-Trap Flag:-Is set,the processor enters the single step execution mode.
I-Interrupt Flag:-Is set,the maskable interrupts are recognized by the CPU.
D-Direction Flag:-Is set for autoincrementing or autodecrementing mode in string manipulation instructions.
AC-Auxiliary Carry Flag:-Is set if there is a carry from the lowest nibble during addition or borrow for the lowest nibble.
O-Overflow Flag:-Is setif the result of a signed operation is large enough to be accommodated in a destination register.

22.Write the flags of 8086?
The 8086 has nine flags and they are
1. Carry Flag (CF)                6. Overflow Flag (OF)
2. Parity Flag (PF)                 7. Trace Flag (TF)
3. Auxiliary carry Flag (AF)   8. Interrupt Flag (IF)
4. Zero Flag (ZF)                  9. Direction Flag (DF)
5. Sign Flag (SF)

23. What are the interrupts of 8086?
The interrupts of 8085 are INTR and NMI. The INTR is general maskable interrupt and NMI is non-maskable interrupt.

24. How clock signal is generated in 8086? What is the maximum internal clock frequency of 8086?
The 8086 does not have on-chip clock generation circuit. Hence the clock generator chip, 8284 is connected to the CLK pin of8086. The clock signal supplied by 8284 is divided by three for internal use. The maximum internal clock frequency of8086 is 5MHz.

25. Write the special functions carried by the general purpose registers of 8086?
The special functions carried by the registers of 8086 are the following.
Register Special function
1. AX 16-bit Accumulator
2. AL 8-bit Accumulator
3. BX Base Register 4. CX Count Register 5. DX .Data Register

26.What is the need for Port?
The I/O devices are generally slow devices and their timing characteristics do not match with processor timings. Hence the I/O devices are connected to system bus through the ports.

27.What is a port?
The port is a buffered I/O, which is used to hold the data transmitted from the microprocessor to I/O device or vice-versa.

28.What is processor cycle (Machine cycle)?
The processor cycle or machine cycle is the basic operation performed by the processor. To execute an instruction, the processor will run one or more machine cycles in a particular order.

29.What is Instruction cycle?
The sequence of operations that a processor has to carry out while executing the instruction is called Instruction cycle. Each instruction cycle of a processor indium consists of a number of machine cycles.

30.What is fetch and execute cycle?
In general, the instruction cycle of an instruction can be divided into fetch and execute cycles. The fetch cycle is executed to fetch the opcode from memory. The execute cycle is executed to decode theinstruction and to perform the work instructed by the instruction.

 

Preparation for Engineering . Copyright 2012 All Rights Reserved